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Abstract - This project presents the design of a Model 

Reference Adaptive Controller (MRAC) for an unstable 

Helicopter System to track the pitch rate command signal 

with minimum control effort in nominal condition and also in 

the presence of aerodynamic fault and aerodynamic 

uncertainty. In the conventional flight control systems, 

controller gains are scheduled to provide better performance. 

Neural Networks are used for identification, modeling and 

control of nonlinear system. The off-line trained neural 

controller to track the pitch rate for an unstable helicopter 

system is obtained. Quantitative performance measures like 

maximum absolute error, root mean square error and control 

effort are measured. Responses at nominal condition and fault 

conditions are simulated. 
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1. INTRODUCTION  

 
Traditional flight control system are designed using the 

linearized helicopter model at different operating conditions 

and the controller gains are scheduled to provide better 

performance. Gain Scheduling is one of the most popular 

nonlinear control design approach [1], [2] which has been 

widely and successfully applied in fields ranging from 

aerospace to process control. However it is difficult for the 

gain scheduling technique to provide the necessary tracking 

performance under severe uncertainty and fault conditions. 

Hence, adaptive nonlinear flight control schemes are used to 

overcome this difficulty. During the past decade, a large 

amount of research work has been carried out in neural control 

theory almost independent from adaptive nonlinear control 

research [3]. The concept of Neural Adaptive Flight Control 

is perhaps the most challenging because it is constructed with 

guaranteed stability that ensures peak performance of the 

aircraft [4]. Neural networks are used for identification, 

modeling and control [5], [6] of the nonlinear systems due to 

their approximation capabilities and inherent adaptive 

features. The feasibility of applying neural-network 

architectures for identification and control of nonlinear 

systems was first demonstrated through numerical studies in 

[7]. Among various adaptive control schemes, model 

reference adaptive control, dynamic inversion and feedback 

error learning controls are widely used [8-12]. In feedback 

error-learning scheme [13], the control architecture uses a 

conventional controller in the inner loop to stabilize the 

system dynamics and the neural controller acts as an aid to the 

conventional controller for compensating the nonlinearities. 

Under severe uncertainty and fault conditions, the neural 

network is adapted to ensure better tracking performance, but 

the control effort required is usually high when compared to 

the adaptive neural controllers [14]. To overcome these 

problem, MRAC scheme is used, which track the pitch rate 

command signal. 

 

  The paper is organized as follows: In section 2.1, 

modeling of the nonlinear aircraft is discussed. In section 2.2, 

reference model used is described. In section 2.3, the model 

reference adaptive method used for the unstable helicopter 

system is discussed. Section 2.4 presents the simulation 

results obtained using the model reference adaptive system. 

Section 3 discusses the performance measures. 

 

2.1 HELICOPTER SYSTEM  MODELING 

 

The Helicopter System is the Multiple Input Multiple 

Output and an unstable System with four inputs, five outputs 

and it has eight states. The nonlinear model of the helicopter 

system is given as  

          ),( uxfx            (1) 

 where 

Trqpwvux ][            (2) 

 represents the state variables and 

  
T

dirlonglatcolu ][ 
          

(3) 

represents the control vector    

δcol     -   collective input 

δlat    -  lateral cyclic input 

δlong  -  longitudinal cyclic input  

δdir      -   pedal input  

The nonlinear model is linearized about the trim condition 

at hover, low speeds and straight and level flight at various 

speed conditions using analytical methods. The linearized 

helicopter system dynamics in the state space form is  

 
)()()(

)()()(

tDutCXtY

tButAXtX




 

http://www.ijsrem.com/


          International Journal of Scientific Research in Engineering and Management (IJSREM) 

           Volume: 04 Issue: 04 | April -2020                                                                                                          ISSN: 2582-3930                                                                                                                                               

 

© 2020, IJSREM      |  www.ijsrem.com                                                                                                                                              |        Page 2 
 

In order to obtain the set of linear equations which 

describes the longitudinal motion of the helicopter system, the 

nonlinear equations of motion are numerically perturbed 

around the trim conditions. In the state –space model, the 

perturbed states of the system (x) are forward speed v in m/s, 

angle of attack α in rad, pitch rate q in rad/s and pitch angle θ 

in rad. The input δlong of the system is the pilot longitudinal 

cyclic deflection. The state space representations of the 

helicopter system are 

 

When the helicopter system is operating at 25m/s cruise 

speed, the state space model is 

 

𝐴 = [

−0.1688 0.8500                  0     −9.81
−0.03

0
    

−3.2797             0.9188
     2.21              −2.7546

       
0
0

0         0                         1        0

] 

B=[

−0.4783
−0.6178
−3.2529

0

] 

𝐶 = [0 0 1 0] 

D = [0] 

     When the helicopter system is operating at 45m/s cruise 

speed, the state space model is 

𝐴 = [

−2.026 1.224                  0     −9.81
−0.03

0
    

−3.9357                 0.9188
     3.1824              −3.3055

      
0
0

0         0                         1        0

] 

B = [

−0.6888
−0.7414
−4.6842

0

] 

𝐶 = [0 0 1 0] 

𝐷 = [0] 

 
2.2 REFERENCE MODEL 

 

For the helicopter system, the most commonly used 

reference model is the Attitude Command & Attitude Hold 

(ACAH) system. The reference model consists of a command 

filter. It is designed in such a way that its response satisfies 

handling qualities and is used to provide the desired response, 

when the input signal is applied to the helicopter system. The 

damping ratio of the filter is between 0.6 and 0.8 and the 

natural frequency is 5 rad/sec. The state space representation 

of the reference model is as follows: 

𝐴𝑟𝑒𝑓 =  [
−3.5392 −2.5088

2 0
]                          

𝐵𝑟𝑒𝑓 =  [
2
0

]  

𝐶𝑟𝑒𝑓 =  [0.8864 0.7664]   

𝐷𝑟𝑒𝑓 = [0] 

2.3 MODEL REFERENCE ADAPTIVE 

CONTROLLER 

 

This is an adaptive control technique where the 

performance specifications are given in terms of a reference 

model. The reference model represents the ideal response of 

the process to a command signal. The neural model reference 

control architecture uses two neural networks: a controller 

network and a plant model network. The plant model is 

identified first, and then the controller is trained so that the 

plant output follows the reference model output. The system 

has an ordinary feedback loop composed of the process and 

the controller and another feedback loop that changes the 

controller parameters.  

 

2.4 SIMULATION RESULTS  

 

The data obtained by providing the pseudo random 

reference inputs are used to adapt the neural controller weight 

matrices off-line. From Fig. 1, it is observed that the controller 

parameters adapts such that they follow the reference 

command accurately. 

 

A. Responses under Nominal Condition  

 

Response for NN Model Reference Control is shown in 

Fig.2.  Fig.3 shows the Longitudinal Cyclic Deflections 

applied to the helicopter system. Fig.4 (a, b, c, d) shows the 

response of the helicopter system at 45m/s using the Model 

Reference Adaptive Controller. It is shown that the pitch rate 

of the helicopter system closely follows the reference input. 

The forward speed decreases with increase in time. The angle 

of attack and the pitch angle increases with increase in time. 

 

 
 

Fig -1: Response of the helicopter at nominal condition 
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Fig -2: Response for NN Model Reference Control 

 
 

Fig -3: Longitudinal Cyclic Deflections 
 

 
(a) 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Fig -4: Response of the helicopter system at 45 m/s               
(a) forward speed   (b) angle of attack (c) pitch rate  

(d) pitch angle 
 
 

B. Responses under Fault Conditions 

 

         The responses of the helicopter system are observed 

under different fault conditions.  

System Matrix Uncertainty (SMU): Here the ‘A’ matrix of 

the nominal helicopter system is assumed to vary by 150% 

(A’=1.5A). Now the controller will be tested with the same 

input signal and the responses are obtained. Fig. 5 (a, b) 

shows the response of the helicopter system under SMU fault 

at 45m/s. 

Control Surface Loss (CSL): By varying the ‘B’ matrix of the 

nominal helicopter system by 50% (B’=0.5A) this fault is 

obtained. Now the controller will be tested with the same 

input signal and the responses are obtained. Fig. 6 (a, b) 

shows the response of the helicopter system under CSL fault 

at 45m/s. 

 

 
 

(a) 
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(b) 

Fig -5: Response of the helicopter system under SMU fault 
at 45m/s (a) forward speed  (b) angle of attack 

 
(a) 

(b) 

Fig -6: Response of the helicopter system under CSL 

fault at 45m/s (a) forward speed (b) angle of attack 
 

C. Responses of the system at 25 m/s 

Fig.7 (a, b) shows the response of the helicopter system at 

25m/s using the Model Reference Adaptive Control System. 

The forward speed increases with increase in time and the 

angle of attack decreases with increase in time. 

 

 
 

(a) 

 
 

(b) 
Fig -7: Response of the helicopter system at 25 m/s (a) 

forward speed (b) angle of attack. 
 

2.5 PERFORMANCE MEASURES 

 

The quantitative performance measures are maximum 

absolute error (MAE), root mean square error (RMSE) and 

maximum absolute elevator deflection (MEL) are calculated 

using these formulas. 

MAE= |)()(|max * kyky 
                

(5) 

RMSE=




N

k

kyky
N 1

2* )]()([
1

         (6) 

MEL= |)(|max klong
            (7) 

Table -1: Performance Measures for Controller at Different 

Flight Conditions 

Speed

,             

V 

(m/s) 

 

Condition 

 

MAE       

( ̊ /s) 

 

RMSE     

( ̊ /s) 

 

MEL       

(deg ) 

Contro

l effort 

(deg) 

 

45 

Nominal 0.143

8 

0.01004 0.5 17.711 

SMU 

A=1.5A 

0.174

6 

0.012 0.494 26.5 

CSL 

B=0.5B 

0.22 0.015 0.453 26.698 

 

25 

Nominal 1.794 0.153 0.743 57.761 

SMU 

A=1.5A 

0.609

8 

0.4616 0.981 104.38 

CSL 

B=0.5B 

0.380

0 

0.0265 0.997 124.88 

 

3. CONCLUSIONS 
 

The neural network based Model Reference Adaptive 

controller for an unstable helicopter system is presented. The 

Model Reference Neural Controller is used to stabilize the 

helicopter system and track the pitch rate command signal. 

From the table, it is seen that the performance measures at 

different flight conditions are minimum so that the pitch rate 

tracks the reference signal closely. The performance measure 

MAE ranges from 0.1438 to 1.794 and RMSE ranges from 

0.01004 to 0.4616. This guarantees a good tracking 

performance.  
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